A parabolic level set reinitialisation method using a discontinuous Galerkin discretisation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Runge – Kutta discontinuous Galerkin conservative level set method

We present a Runge-Kutta discontinous Galerkin (RKDG) method to solve the level set advection equation arising in the conservative level set method. We show results obtained using the method of manufactured solutions demonstrating k + 1 order accuracy for k-th order Legendre polynomial basis functions. The RKDG conservative level set method yields superior results compared to standard finite di...

متن کامل

A Level Set Discontinuous Galerkin Method for Free Surface Flows

We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation as well a various ways of advancing the equations in time using velocity projection techniques. The eff...

متن کامل

Discontinuous Galerkin Level Set Method for Interface Capturing

In this paper, we combine a high-order Discontinous Galerkin (DG) method and level set method solving the interface problem in a complex incompressible flow. The scheme is L2 stable and conservative. It improves the mass conservative property of the level set method. Numerical examples demonstrate the high order accuracy of the method and the high resolution especially when the interface underg...

متن کامل

A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations

Semi-discrete and a family of discrete time locally conservative Dis-continuous Galerkin procedures are formulated for approximations to nonlinear parabolic equations. For the continuous time approximations a priori L 1 (L 2) and L 2 (H 1) estimates are derived and similarly, l 1 (L 2) and l 2 (H 1) for the discrete time schemes. Spatial rates in H 1 and time truncation errors in L 2 are optimal.

متن کامل

Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretisation

In this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence for different block-relaxation strategies. We find that point-wise block-partitioning gives much better results than the classical cell-wise partitioning. Both for the Baumann-Oden and for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2019

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2019.01.032